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MOMENTS IN STATISTICS:
APPROXIMATIONS TO DENSITIES AND
GOODNESS-OF-FIT

Michael A. Stephens

Summary

In this article we discuss ways in which moments are used (a) to approximate
distributions. and (b) to test fit to a given distribution.

1 Approximating distributions using moments

Solomon and Stephens (1977) give a number of examples of statistics X for
which the first few. or even all, the moments or cumulants may be found, but
whose density f{z) and distribution F(z), assumed continuous, are intractable.
A good example is the statistic S whose distribution is the weighted sum of
independent chi-square variables, each with one degree of freedom, written

k
S:Zz\,(u.‘)z (1)
t=1

where u; arei.i.d. N(0,1), and A; are known weights. Many quantities in statis-
tics have distributions (often asymptotic distributions) like S; for example, the
Pearson X2 statistic, used in testing fit to a distribution when the distribution
tested contains unknown parameters which are estimated by maximising the
usual likelihood, rather than the multinomial likelihood, has this distribution
with some A; # 1. Other goodness-of-fit statistics, of Cramer-von Mises type,
based on the empirical distribution function (EDF), also have such asymptotic
distributions (see, for example, many examples in Stephens, 1986a).

One of the first examples of S to be tabulated, for k£ = 2, involved errors in
target hitting during Worid War 2: tables for S were produced with some labour
by Grad and Solomon (1955) using analytic methods. These have been extended
by various authors to higher values of k. but the analysis after £ = 5 or 6 rapidly

1-A




MOMENTS IN STATISTICS:
APPROXIMATIONS TO DENSITIES AND
GOODNESS-OF-FIT

Michael A. Stephens,
Simon Fraser University, Burnaby, B. C., Canada V5A 156

Summary

In this article we discuss ways in which moments are used (a) to approximate
distributions, and (b) to test fit to a given distribution.

1 Approximating distributions using moments

Solomon and Stephens (1977) give a number of examples of statistics X for
which the first few, or even all, the moments or cumulants may be found, but
whose density f(z) and distribution F(z), assumed continuous, are intractable.
A good example is the statistic S whose distribution is the weighted sum of
independent chi-square variables, each with one degree of freedom, written

k
S= Z Xi(ui)? (1)

i=1

where u; arei. i.d. N(0, 1), and ); are known weights. Many quantities in statis-
tics have distributions (often asymptotic distributions) like S; for example, the
Pearson X2 statistic, used in testing fit to a distribution when the distribution
tested contains unknown parameters which are estimated by maximising the
usual likelihood, rather than the multinomial likelihood, has this distribution
with some )A; # 1. Other goodness-of-fit statistics, of Cramer-von Mises type,
based on the empirical distribution function (EDF), also have such asymptotic
distributions (see, for example, many examples in Stephens, 1986a).

One of the first examples of S to be tabulated, for £ = 2, involved errors in
target hitting during World War 2: tables for S were produced with some labour
by Grad and Solomon (1955) using analytic methods. These have been extended
by various authors to higher values of k, but the analysis after £ = 5 or 6 rapidly

1-B




becomes very difficult. Thus in general it is difficult to find exact percentage
points of S, but the cumulants «,, r = 1,2, ..., are very easily obtained:

k
Ke= 3 A2 (r~1)! (2)

=1

2 Moments and cumulants

In this section we list definitions. The r-th moment about the origin of a random
variable X, or equivalently of its distribution f(z), will be called . ; the r-th
moment about the mean will be g,. The moment generating function Mx(t) of
X is defined by

Mx () = / ¢ f(2) dz: 3)
—oo
when expanded as a Taylor series,
/ t2 “I t3 ﬂ:.t’
Mx(@)=1+p+Ho+ B v b B 1)

where u = p} is the mean of X.
Cumulants &, are defined through the cumulant generating function Cx (t) =
log Mx (t), where “log” refers to natural logarithm. Then

. Kot? Katd K t"
Cx(t) =it + T+T+ R 2 _

+ .- (5)

Thus in principle we must find Mx (t) before finding Cx(t).

The following relationships exist between low-order moments and cumulants:
K1 = P} = p; K2 = p2 = 0%; k3 = pa; k4 = pq — 3p3. Further relationships may
be found in Kendall and Stuart (1977, vol 1).

Suppose Z = X; + X2+ X3 + ...+ Xi where X; are independent random
variables. Then a property of moment generating functions is

Mz(t) = Mx,(t) Mx,(t) Mx,(t) . .- Mx, (1),

so that
Cz(t) = Cx,(t) + Cx,(t) + - - - + Cx. (1), (6)

and it quickly follows, using obvious notation, that
ke(2) = Ke(X1) + 8r(X2) + - + K X (7)

This additive property makes it very easy to find cumulants of sums of inde-
pendent random variables, and hence, for example, the cumulants of S.




Two important Mx(t) are those of the N(u,0?) distribution, Mx(t) =
exp(pt + 02t2/2), and the x2 distribution, Mx(t) = 1/(1 ~ 2t)*/2. Finally,
it is easily shown that u.(aX +b) = a"u.(X), for r > 2, where a and b are any
real constants, and k,(aX + b) = a"x.(X),r > 2.

As an example, consider S. If X has a x? distribution, the MGF of X
is 1/(1 — 2¢)!/2; thus Cx(t) = —3log(1 — 2t), and expansion gives Cx(t) =
t4 22 4+ 8—3'; + %}: 4+ ---. Thus the r-th cumulant of X is x, = 27~1(r — 1)},
that of A;X is A]x,, and by the additive property (7), the r-th cumulant of S
is given by the expression (2).

3 Mathematical approximations

The approximations in this section are called “mathematical” because they are
based on mathematical analysis, with known properties of accuracy and conver-
gence, in contrast to those to be considered later.

Suppose n(t) is the standard normal density

n(t)=e " 12)\ax (8)

and let f(z) be the (continuous) density of X. Then it is (nearly always) possible
to expand f(z) as

f(z) = n(z) {1 + %(l‘z - 1)Hy(z) + %#3”3(3) + 2—14(;44 — 62+ 3)Ha(z) + .. }
9

called a Gram-Charlier series. The H,(z) are Hermite polynomials. Lists of
Hermite polynomials, and also conditions for convergence, etc., are given in
Kendall and Stuart (1977, vol. 1).

The basic technique involved in deriving (9) rests on the fact that Hermite
polynomials are orthogonal with respect to the kernel n(z); thus

o0 . .
/ Hi(z) Hj(z) n(z) dz = { 0.i#J (10)
-00 )= J-
Then if f(z) = Y, cin(z)Hi(z), multiplication by H;(z) on both sides, and
integration, gives

o= [ 1@ Hy(a)ds

. When worked out, ¢; = (p2 — 1)/2,c3 = p3/6, etc.

If an infinite set of moments is available, as for S, the density can be ap-
proximated very accurately using a Gram-Chatrlier series of sufficient length, but
there are many statistics in practical applications for which it is difficult even
to get the first four moments — see Solomon and Stephens (1977) for examples.
There are two other important drawbacks:




1. A k-term fit might, at any one value of z, be worse than a (k — 1)-term
fit.

2. Gram-Charlier series with finite numbers of moments can give a negative
density f(z), particularly in the tails.

3.1 Percentage points approximation

A Gram-Charlier-type expansion can also be found for F(z), the distribution
function of X; this can be inverted to give a percentage point for a given cumu-
lative area a. Thus suppose F(z,) = a; we want an approximation to z,. A
Cornish-Fisher expansion gives z — £ as a series in Hermite polynomials in
z, or (more practically useful) in §, where £ is the percentile corresponding to
a for the normal distribution, that is,  is the solution of

4
/ n(z)dz = a. (11)
-0
Again, problems can arise with the convergence to the desired z,. For more
details on mathematical expansions of Gram-Charlier or Cornish-Fisher type,
see Kendall and Stuart (1977, vol. 1).

4 Pearson curves and other systems

We now turn to a method of approximation which can be thought of as “laying
one curve upon another” — the approximating curve has parameters which can
be varied to make a good fit. The parameters are usually chosen by matching
moments or cumulants. Percentage points of the approximating curve, which
are tabulated or otherwise easily found, are then used as approximations to the
desired points.

A family of approximating curves is the Pearson system, where the (contin-
uous) density f(z) is approximated by f*(z), given by

1 df*(z) _ a+z
f'(z) dx _bo+blz+b222.

(12)

According to the values of the constants a,bg, b, ba, integration of the right-
hand side will take many forms, giving great flexibility to the system of densities
J*(z). With considerable algebra (see Elderton and Johnson, 1969, for details),
the constants may be put in terms of the moments:

Suppose A = 10uepz — 1843 — 1242; then (13)
2
a = ﬂ@:_?’"z), (14)




b = —pa(dpapa — 3p3)
o —

- , (15)
bl = -—a; (16)
- - 2 _ 2

Thus knowledge of the first four moments or cumulants of X will fix the con-
stants above: a further constant C enters on integrating, but is fixed by the fact
that the total integral of f*(z) must be 1.

4.1 Percentage points

When the constants are known, the density f*(z) may be integrated and per-
centage points solved for numerically. Over the years, this was done, at first
very laboriously, for a small range of possibilities, but a quite extensive tab-
ulation was made, using electronic computers, in the late '60s. These tables
are in Biometrika Tables for Statisticians, vol. II. The form of the tables is
as follows. The percentage points for X, the standardised X-variable given by
X = (z — p)/o, are plotted in a two-way table indexed by the skewness and
kurtosis parameters 8; and (2. These are defined by

2
H3 H4
b= and 3, = —; 18
1 3 ﬂ2 2 ( )

they have been defined to be scale-free, and \/B; takes the sign of u3. S
measures skewness: a large (positive) v/f; means the curve is skewed towards
positive values (long tail is to the right) and vice versa for negative /f;. A
large B, (always positive) means the density has heavy tails. Of course, all
symmetric distributions have §; = 0; a benchmark to measure kurtosis is the
normal distribution for which §, = 3. Since x4 = p4 — 3p3, the parameter
v2 = B2 — 3 = K4/k3 can also be regarded as measuring kurtosis, with value
72 = 0 for the normal distribution.

Suppose, for a given S, we have /5] = 0.8 and B; = 4.6. To use Biomelrika
Tables, one enters the appropriate /B, table, /A = 0.8, and travels down
the left-hand column until the 32 value, 4.6, is reached. Along the row are 17
tabulated percentage points for X, from a = 0.00 to a = 1.00. Interpolation
must be used for /B, B2 values not explicitly given.

4.2 Un peu d’histoire

At this point, perhaps, it might be permitted to enliven the account with what
the Guide Michelin calls un peu d’histoire. At the time Biometrika Tables Vol.
11 were being prepared, I was fortunate enough to know Professor E. S. Pear-
son, then retired but still very active, especially as Editor of Biometrika. He
had collaborated with workers in the U. S. to get the tables (Johnson, Nixon,




Amos and Pearson, 1963) and had carefully compiled the full set by hand. He
had introduced me to Pearson curves, which, to put it rildly, did not figure
prominently in statistical training of the day, and had shown me how effective
they could be. He gave me a copy of the tables to use. I undertook to write
a Fortran program on the IBM 650, to interpolate and find points, given the
first four moments. All 20 tables were then typed onto punched cards; in the
end, I got it down to approximately 45 minutes per table. This is not such a
dramatic piece of history as Michelin usually provides (assignations and assas-
sinations often play a prominent role), but a diminishing generation of modern
readers will still empathise with the fears of losing the boxes of cards, getting
them wet in the snows of Montréal, etc., not to mention the awful discovery of
a wrongly-typed number!

Since then, programs have been written to integrate the density equation
for f*(z) numerically and to solve for z, for given a, or to provide the tail
area for given z; one of these, kindly given to me by Amos and Daniel (1971),
has been added to my program; this greatly increases the range of 8, and S
for which Pearson curve approximations can be found. However, points are
still output from both the Amos and Daniel part of the program and by the
Biometrika Tables part, ostensibly as a check where available, but truthfully as
a sentimenta! tribute to E. S. P.

Later on, Charles Davis and I (Davis and Stephens, 1983) added to the
program to enable a fit to be made using knowledge of an end point (for example,
that the left-hand endpoint of S is zero) and three moments. This is especially
valuable for the type of statistic for which each successive moment requires
exponentially increasing hard work — for example, the distribution of areas, or
perimeters, of polygons formed by randomly dropping lines on a plane — see
Solomon and Stephens (1977). The Pearson-curve fitting program is available
from the author.

Further developments have included algorithms to facilitate use of Pearson
curves — see, for example, Bowman and Shenton (1979a, 1979b).

4.3 Accuracy of Pearson curve fits

{a) Pearson curve densities are unimodal, or possibly J- or U-shaped, but never
multimodal. They are also never negative.

(b) Percentage points or tail areas found from Pearson curve fitting have been
found, for unimodal long-tailed distributions, to be very accurate in the
long tail, at least for tail areas bigger then 0.005, or the 0.5% point.
Pearson and Tukey (1965) discuss this issue; Solomon and Stephens (1977)
give comparisons. (In making comparisons, one must of course compare
the Pearson curve fit with the correct z,, or the correct area for given z,
for a distribution which is not itself a member of the Pearson family.)




(c) Davis (1975) has made extensive comparisons with Gram-Charlier fits using
only four moments. Pearson curve fits are better than Gram-Charlier fits
everywhere except for distributions very close to the normal, as measured

by the 8, B2 values.

4.4 Other systems

Johnson (1949) has proposed another family (divided into three parts) of curves
defined by four moments: for example, the Sy curves are those given by the

relation
€=v+6sinh™!' X (19)

where X = (z — p)/o, and 7,8 are to be chosen to make the distribution of
¢ as close as possible to N(0,1). A discussion, and tables to facilitate the
calculation of ¥ and é, are in Biometrika Tables for Statisticians Vol. II. Other
authors have also proposed families of distributions, but they have not come
into such common use for the purpose of approximating percentage points.

5 Use of higher moments

We now turn to the first of two interesting questions — can higher moments
be used to improve the accuracy of Pearson curve fits in the long tail of the
distribution? The long tail will be supposed to lie to the right, as for the
distribution of S; then, since higher values of z will contribute more to the
higher moments than smaller values, we might suppose that fits using higher
moments will improve accuracy. Unfortunately it is not easy to establish the
four constants in terms of higher moments — of course, only four of these would
be needed to fix the constants. A recursion formula exists to generate higher
moments, for r = 2,3,...

rbopi_y 4 {(r+ Dby +a)pl + {r+ Db+ 1plyy =0 (20)

In this recursion, the constants a, bo, b; and b; occur, and this means that one
cannot reverse the recursion and generate , say, u and 2 from u3, uq, s and pe.

Nevertheless, one can generate the fifth and sixth moments of the Pearson
curve with the same first four moments of, say, S, and compare them with the
true fifth and sixth moments of S. The first two moments are then slightly
changed, and the procedure successively repeated, until the third, fourth, fifth
and sixth moments of each curve match. This will mean that the mean and
variance of the Pearson curve will not be exactly the same as those for S,
although they will be close, and this will probably make a worse fit in the lower
tail; but for higher z the fit could improve. I have made some comparisons using
this procedure, but, as one might expect, there appears to be no systematic
improvement. In discussion, when this paper was first presented, the suggestion




was made to use Least Squares to make “closest” fits, in order to compare the
six moments. More work is needed to compare Pearson curve fits along these
various lines, but it is not likely that the improvement will be sure, or will
extend to points far into the tails. In the end it must be remembered that one
curve is simply being laid on top of another, with only four parameters to vary,
and there is no mathematical analysis that will guarantee accuracy.

Other methods for developing accuracy in the extreme tails include numerical
inversion of the Characteristic Function (essentially the M/<F with it replacing ¢,
where 1 = \/—_l), or saddlepoint approximations. A method due to Imhof (1961)
uses numerical inversion for distributions such as S, but the computer time
needed increases rapidly as the distance into the tails increases (to give small
tail areas). Field (1992) has recently examined saddle-point approximations for
S. These would seem to give more promise of tail-end accuracy in the long run.

6 Use of sample moments

The second interesting question is: how accurate are Pearson curve fits when
sample moments are used to make the fit? In the earliest days, this was the use
to which Pearson curves were applied — to find a smooth density to describe
a set of data, such as lengths of beans, or width of skulls. Kendall and Stuart
(1977, Vol. 1) gives details of such a fit. L: general, the Pearson curves will give
very good fits to a unimodal set of data, or even to J-shaped or U-shaped sets,
but it is important to assess the accuracy of extrapolation from the sample to
the supposed population from which it came. More precisely, we ask how close
the sample fit estimate of, say, the upper-tail 5% point is to the true population
5% puint, and, further, whether or not the Pearson-curve point is better than
the estimated point derived from choosing the appropriate order statistic — in a
sample of 1000, the 951st value in ascending order, or in a sample of size 10000,
the 9501st value. Some investigation of these questions has been undertaken in
two quite different ways, by Johnstone (1988) and by myself (Stephens, 1991).
The accuracy of the Pearson curve point will depend on:

1. the sample size n,

2. the a-level (tail area) of the point required,

3. the true skewness and kurtosis of the density approximated,
4. higher moments.

Johnstone gives a small study, for samples from populations with the following
range of parameters:

/(00 00 10 10 2.0
B |33 40 525 6.0 75




Johnstone gives plots of the estimated coefficient of variation, CV, of the
Pearson curve z, against — loga , where the base of logarithms is 10. Thus the
CV of the estimated zq g, is plotted against 2, that of the estimated zg go; is
plotted against 3, etc . The coefficient of variation is estimated using a Taylor
series approximation. As one might expect, the CV goes up markedly as a gets
smaller (so —loga gets larger on the z-axis), and the steepness of the rise is
greaier for the more skew distributions .

In Stephens (1991), Moute Carlo samples were taken from populations for
which exact perc ntage points could be found, and the exact points were com-
pared with those obtained from (a) Pearson curve fits uring the moments of
each sample, and (b) the order statistic estimate from eacu sample. The order
statistic estimate will be asymptotically unbiased, while one can say nothing
exact about the point obtained by laying one curve on another; recall that sam-
ple moments, especially the third and fourth, are extremely variable, even for
quite large samples. The results showed, as expected, that the Pearson curve
points were more biased. However, somewhat surprisingiy, they had smaller
mean square error. Therefore, it might well be preferable to use the Pearson
curve points, although, again, more investigations should be made especially if
the points required are far into the tail.

7 Goodness of fit using moments

In this second part of the paper, we discuss how moments are used in Goodness-
of-Fit, that is, to test whether a random sample comes from a given (continuous)
distribution. The distribution will often have unknown parameters, which must
be estimated from the given sample.

7.1 Tests based on skewness and kurtosis

Suppose the r-th sample moment m, about the mean is defined by

l n
m, =~ 'E—l(z; -z). (21)
The sample skewness and sample kurtosis are then defined by
2
=M, M
b = mg,bz = mi (22)

These statistics are not unbiased estimates of 8; and (3, but they are consistent,
that is, the bias diminishes with incteasing sample size. The sample skewness
and kurtosis are time-honoured statistics for testing normality, having been used
in a rather ad Aoc manner for most of this century; &, is compared with zero,




and b; with &, the value of 8, for the normal distribution. However, distribu-
tion theory of b; and b, is difficult, and it is only since computers have been
available that extensive and reliable tables of significance points have existed for
these statistics. Further, b, and b2 can be combined to give one overall statistic
(d’Agostino and Pearson, 1973, 1974; d’Agostino, 1986). For other distributions
Bowman and Shenton (1986) have also given tables for these statistics. Stud-
ies have shown that skewness and kurtosis, especially combined, provide good
omnibus tests for normality, although less is known for other distributions. For
the important discrete distribution, the Poisson, all cumulants are equal to the
mean, denoted by the parameter A; a time-honoured test for the Poisson is
based on the ratio of sample variance to sample mean, which of course should
be about one. Again, this simple statistic appears to compete well with others
in terms of power.

7.2 A formal technique based on moments

Perhaps because of the variability of sample moments, which makes calculation
of significance points difficult for statistics based on these moments when calcu-
lated from samples of reasonable size, it took some time to formalize a technique
based on moments. Gurland and Dahiya (1970) and Dahiya and Gurland (1972)
have however devised a general procedure. The essential steps are as follows:

1. A vector ¢ of length s, say, must be found, whose components ¢; are func-
tions of the theoretical moments, and such that each component ¢; is linear
in the parameters. (This might involve re-parametrising the distribution
from its usual form).

2. The estimate h of { is obtained by replacing theoretical moments by sam-
ple moments.

3. The test statistic is then based on the difference h ~ (.

Suppose that ¥ is the covariance matrix of h, @ is the g-vector of unknown
parameters, and W is the s x ¢ matrix such that { = W6. Then define

Q: = n(h— WYL~ (h - W),

where 8 = (W'E-'W)~1W'E£-1h. The statistic 6 is the regression estimate of
0 obtained by generalized least squares, and % is £ with the estimate 6 used
wherever @ appears.

Gurland and Dahiya (1970, 1972) showed that, asymptotically, the test
statistic Q, has the x? distribution with t = s— g degrees of freedom. Currie and
Stephens (1986, 1990) have studied the procedure, and show several properties
of Q;. Among these are the fact that the test statlstlc Q. can be broken into
t components, each with asymptotic distribution x3, and each testing different

10




features of the distribution. Each component is a function of moments or cumu-

lants. For example, consider the test for normality, that is, for the distribution

N(p,0?). Gurland and Dahiya (1970) took ¢’ = {u,log 2, pu3,log(pa/3)}, so
10

that b’ = {Z,logmg, m3,log(m4/3)}. The matrix W is W = g (l) , and

0 2
0= [ lo:a’ ] . The test statistic Qz becomes ¢; +¢é2, where the two components

are é; = nm2/6m3 and é; = (3n/8){log(m4/3m3)}. Thus the method leads to
nb, /6 and (3n/8)log(b2/3) as test statistics, equivalent to the “old-fashioned”
bl and bz.

However, it should be noted that the components are not unique; they de-
pend on how ( is formed. Currie and Stephens (1986, 1990) discuss these
questions in some detail.

8 Components of other goodness-of-fit statis-
tics

Other goodness-of-fit statistics also have components which are functions of
moments. The oldest of these was proposed by Neyman (1937), in connection
with a test for uniformity.

A test for a fully specified continuous distribution (that is, all parameters
known) can always be converted to a test for uniformity by means of the Prob-
ability Integral Transformation, and a test for the exponential distribution can
also be so converted, even when the scale and origin parameters are not known,
so that Neyman’s test has wider applicability than it might at first appear. (For
details of these transformations, see Stephens, 1986a, 1986b).

Neyman’s test is as follows: suppose the test is that Z has a uniform distri-
bution between 0 and 1, written U(0,1). On the alternative, let the logarithm
of the density of Z be expanded as a series of Legendre polynomials:

log(f(2)) = A(e){1 + e1L1(2) + c2La(2) + eaLa(z) + -}, (23)

where the ¢; are coefficients, components of the vector ¢, Li(z) is the i-th
Legendre polynomial, and A(¢) is a normalising constant.
A test for uniformity is then a test that all ¢; = 0. The estimates of ¢; are

n
&= Li() (24)
i=1
where 2;,23,...,2, is the given sample.

11




The first few Legendre polynomials are best expressed in terms of y = 2—0.5.
Then

Li(z) = 2V3y, (25)
Ly(z) = V5(6y* - 0.5), (26)
Ly(z) = V7Q0°-3y), 27

so that the estimate é; becomes a function of the first moment about the known
mean 0.5, the second estimate é2 becomes a function of the second moment, é3
a function of both the third and the first moments, etc.

Neyman shows that the suitably normalised é; have asymptotic N(0, 1) dis-
tributions, and his overall test statistic is the sum of the squares of these nor-
malised estimates. Thus the overall statistic has an asymptotic x? distribution,
just as for the Dahiya-Gurland statistic, and the individual terms, based on
moments, are the components of the overall test statistic.

9 EDF statistics

Another important family of goodness-of-fit statistics is that derived from the
Empirical Distribution Function (EDF) of the z-sample. This family includes
the well-known Kolmogorov-Smirnov statistic and the Cramer-von Mises family
of statistics (for details and tests for many distributions based on these, see
Stephens, 1986a).

One of the most important of the Cramer-von Mises class is A2, introduced
by Anderson and Darling (1954). The definition of A2 is based on an integral
involving the difference between the EDF and the tested distribution F(z) (with
parameters estimated if necessary). The working formula is

1
2 - R : - N -— .
A'=-n n 2(2’ 1) {log z() + log(1 = Z(a41-9)] » (28)

where z; = F(z;), and z(;) are the order statistics.

As an omnibus test statistic, A2 has been shown to perform well in many
test situations.

Anderson and Darling showed that the asymptotic distribution of A? is,
like S of Section 1, a sum of weighted x? variables. The individual terms
in the sum can again be regarded as components of the entire statistic, and
Stephens (1974) has investigated these components in some detail. A remarkable
result is that they too are based on Legendre polynomials, so that they are
effectively the same as the Neyman components, based on moments of the z-
sample. There has been some investigation of components of these and other
statistics, as individual test statistics for the distribution under test; references
are given by Stephens(1986a). As for the Gurland-Dahiya components, they can
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be expected to be sensitive to different departures from the tested distribution.
The complete test statistics of Neyman and of Anderson-Darling combine the
same components, but with different weightings.
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